Orthogonal Vector Hung-yi Lee

Orthogonal Set

 A set of vectors is called an orthogonal set if every pair of distinct vectors in the set is orthogonal.

$$S = \left\{ \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \\ -1 \end{bmatrix}, \begin{bmatrix} 5 \\ -4 \\ 1 \end{bmatrix} \right\}$$
 An orthogonal set?

By definition, a set with only one vector is an orthogonal set.

Is orthogonal set independent?

• Reference: Chapter 7.2

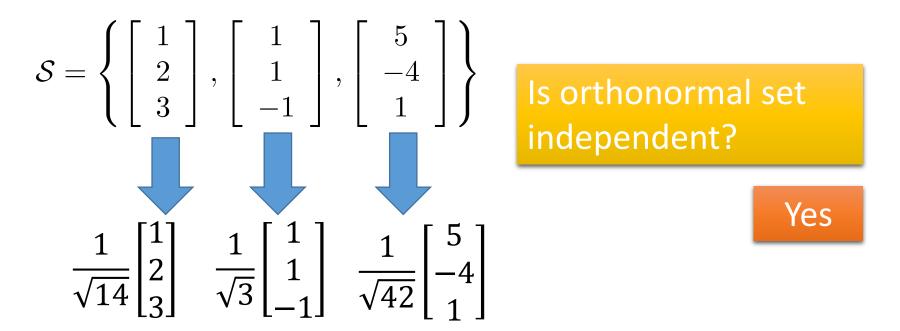
Independent?

 Any orthogonal set of nonzero vectors is linearly independent.

Let
$$S = \{\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_k\}$$
 be an orthogonal set $\mathbf{v}_i \neq \mathbf{0}$ for $i = 1, 2, ..., k$.

Assume $c_1, c_2, ..., c_k$ make $c_1\mathbf{v}_1 + c_2\mathbf{v}_2 + \cdots + c_k\mathbf{v}_k = \mathbf{0}$

$$(c_1\mathbf{v}_1 + c_2\mathbf{v}_2 + \cdots + c_i\mathbf{v}_i + \cdots + c_k\mathbf{v}_k) \cdot \mathbf{v}_i = \mathbf{0} \cdot \mathbf{v}_i = \mathbf{0}$$


$$= c_1\mathbf{v}_1 \cdot \mathbf{v}_i + c_2\mathbf{v}_2 \cdot \mathbf{v}_i + \cdots + c_i\mathbf{v}_i \cdot \mathbf{v}_i + \cdots + c_k\mathbf{v}_k \cdot \mathbf{v}_i$$

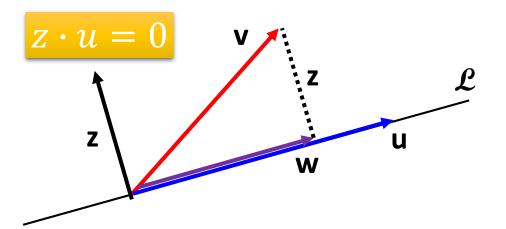
$$= c_i(\mathbf{v}_i \cdot \mathbf{v}_i) = c_i||\mathbf{v}_i||^2 \qquad c_i = \mathbf{0}$$

$$\neq \mathbf{0} \qquad \qquad \neq \mathbf{0}$$

Orthonormal Set

 A set of vectors is called an orthonormal set if it is an orthogonal set, and the norm of all the vectors is 1

A vector that has norm equal to 1 is called a unit vector.


Orthogonal Basis

 A basis that is an orthogonal (orthonormal) set is called an orthogonal (orthonormal) basis

[1	O	0]	Orthogonal basis of R ³
0	1	0	
	0	1	Orthonormal basis of R ³

Orthogonal Projection

Orthogonal projection of a vector onto a line

v: any vector

 \mathcal{L} u: any nonzero vector on \mathcal{L}

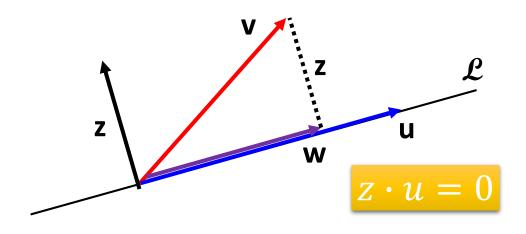
w: orthogonal projection of

v onto \mathcal{L} , **w** = $c\mathbf{u}$

z: v - w

$$(v - w) \cdot u = (v - cu) \cdot u = v \cdot u - cu \cdot u = v \cdot u - c||u||^2$$

$$c = \frac{v \cdot u}{\|u\|^2} \quad w = cu = \frac{v \cdot u}{\|u\|^2} u$$


Distance from tip of **v** to
$$\mathcal{L}$$
: $||z|| = ||v - w|| = \left||v - \frac{v \cdot u}{||u||^2}u\right||$

Orthogonal Projection

$$c = \frac{v \cdot u}{\|u\|^2}$$

$$w = cu = \frac{v \cdot u}{\|u\|^2} u$$

• Example:

$$\mathcal{L}$$
 is $y = (1/2)x$

$$v = \begin{bmatrix} 4 \\ 1 \end{bmatrix} \quad u = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$$

Orthogonal Basis
$$c = \frac{v \cdot u}{\|u\|^2}$$
 $w = cu = \frac{v \cdot u}{\|u\|^2}u$

• Let $S = \{v_1, v_2, \dots, v_k\}$ be an orthogonal basis for a subspace V, and let u be a vector in V.

$$u = c_1 v_1 + c_2 v_2 + \dots + c_k v_k$$

$$\frac{u \cdot v_1}{\|v_1\|^2} \frac{u \cdot v_2}{\|v_2\|^2} \frac{u \cdot v_k}{\|v_k\|^2}$$

Proof

To find c_i

$$u \cdot v_{i} = (c_{1}v_{1} + c_{2}v_{2} + \dots + c_{i}v_{i} + \dots + c_{k}v_{k}) \cdot v_{i}$$

$$= c_{1}v_{1} \cdot v_{i} + c_{2}v_{2} \cdot v_{i} + \dots + c_{i}v_{i} \cdot v_{i} + \dots + c_{k}v_{k} \cdot v_{i}$$

$$= c_{i}(v_{i} \cdot v_{i}) = c_{i}||v_{i}||^{2} \qquad c_{i} = \frac{u \cdot v_{i}}{||v_{i}||^{2}}$$

Example

• Example: $S = \{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ is an orthogonal basis for \mathbf{R}^3

$$\mathbf{v}_1 = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}, \mathbf{v}_2 = \begin{bmatrix} 1 \\ 1 \\ -1 \end{bmatrix}, \mathbf{v}_3 = \begin{bmatrix} 5 \\ -4 \\ 1 \end{bmatrix}$$

Let
$$\mathbf{u} = \begin{bmatrix} 3 \\ 2 \\ 1 \end{bmatrix}$$
 and $\mathbf{u} = c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 + c_3 \mathbf{v}_3$.

 c_1

 C_2

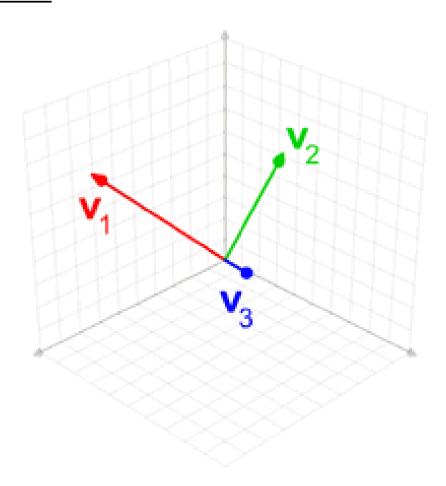
 c_3

.

Orthogonal Basis

Let $\{u_1, u_2, \dots, u_k\}$ be a basis of a subspace V. How to transform $\{u_1, u_2, \dots, u_k\}$ into an orthogonal basis $\{v_1, v_2, \dots, v_k\}$?

Let $\{\mathbf{u}_1, \mathbf{u}_2, \cdots, \mathbf{u}_k\}$ be a basis for a subspace W of \mathbb{R}^n . Define


$$\begin{aligned} \mathbf{v}_1 &= \mathbf{u}_1, \\ \mathbf{v}_2 &= \mathbf{u}_2 - \frac{\mathbf{u}_2 \cdot \mathbf{v}_1}{||\mathbf{v}_1||^2} \mathbf{v}_1, \\ \mathbf{v}_3 &= \mathbf{u}_3 - \frac{\mathbf{u}_3 \cdot \mathbf{v}_1}{||\mathbf{v}_1||^2} \mathbf{v}_1 - \frac{\mathbf{u}_3 \cdot \mathbf{v}_2}{||\mathbf{v}_2||^2} \mathbf{v}_2, \\ &\vdots \\ \mathbf{v}_k &= \mathbf{u}_k - \frac{\mathbf{u}_k \cdot \mathbf{v}_1}{||\mathbf{v}_1||^2} \mathbf{v}_1 - \frac{\mathbf{u}_k \cdot \mathbf{v}_2}{||\mathbf{v}_2||^2} \mathbf{v}_2 - \dots - \frac{\mathbf{u}_k \cdot \mathbf{v}_{k-1}}{||\mathbf{v}_{k-1}||^2} \mathbf{v}_{k-1}. \end{aligned}$$

Then $\{\mathbf{v}_1, \mathbf{v}_2, \cdots, \mathbf{v}_i\}$ is an orthogonal set of nonzero vectors such that

Span
$$\{\mathbf{v}_1, \mathbf{v}_2, \cdots, \mathbf{v}_i\} = \text{Span } \{\mathbf{u}_1, \mathbf{u}_2, \cdots, \mathbf{u}_i\}$$

for each i. So $\{\mathbf{v}_1, \mathbf{v}_2, \cdots, \mathbf{v}_k\}$ is an **orthogonal basis** for W.

Visualization

https://www.youtube.com/watch?v=Ys28-Yq21B8